
NSRIT

K.Shankar,Assoc Professor
Dept of CSE - 1 -

m

UNIT -1

1.1 OVERVIEW OF LANGUAGE PROCESSING SYSTEM

1.2 Preprocessor
A preprocessor produce input to compilers. They may perform the following functions.

1. Macro processing: A preprocessor may allow a user to define macros that are short

hands for longer constructs.

2. File inclusion: A preprocessor may include header files into the program text.
3. Rational preprocessor: these preprocessors augment older languages with more

modern flow-of-control and data structuring facilities.

4. Language Extensions: These preprocessor attempts to add capabilities to the language

by certain amounts to build-in macro

1.3 COMPILER

Compiler is a translator program that translates a program written in (HLL) the source

program and translate it into an equivalent program in (MLL) the target program. As an

important part of a compiler is error showing to the programmer.

Source pg target pgm

Compiler

Error msg

NSRIT

K.Shankar,Assoc Professor
Dept of CSE - 2 -

Executing a program written n HLL programming language is basically of two parts. the

source program must first be compiled translated into a object program. Then the results

object program is loaded into a memory executed.

Source pgm

Compiler
obj pgm

Obj pgm input

Obj pgm opj pgm output

1.4 ASSEMBLER: programmers found it difficult to write or read programs in machine

language. They begin to use a mnemonic (symbols) for each machine instruction, which

they would subsequently translate into machine language. Such a mnemonic machine

language is now called an assembly language. Programs known as assembler were

written to automate the translation of assembly language in to machine language. The

input to an assembler program is called source program, the output is a machine language

translation (object program).

1.5 INTERPRETER: An interpreter is a program that appears to execute a source
program as if it were machine language.

Languages such as BASIC, SNOBOL, LISP can be translated using interpreters. JAVA also

uses interpreter. The process of interpretation can be carried out in following phases.

1. Lexical analysis

2. Synatx analysis

3. Semantic analysis

4. Direct Execution

Advantages:

 Modification of user program can be easily made and implemented as execution

proceeds.

Type of object that denotes a various may change dynamically.

Debugging a program and finding errors is simplified task for a program used for

interpretation.

 The interpreter for the language makes it machine independent.

NSRIT

K.Shankar,Assoc Professor
Dept of CSE - 3 -

Disadvantages:

The execution of the program is slower.

Memory consumption is more.

2 Loader and Link-editor:

Once the assembler procedures an object program, that program must be placed into
memory and executed. The assembler could place the object program directly in memory

and transfer control to it, thereby causing the machine language program to be

execute. This would waste core by leaving the assembler in memory while the user’s

program was being executed. Also the programmer would have to retranslate his program

with each execution, thus wasting translation time. To over come this problems of wasted

translation time and memory. System programmers developed another component called

loader

“A loader is a program that places programs into memory and prepares them for

execution.” It would be more efficient if subroutines could be translated into object form the

loader could”relocate” directly behind the user’s program. The task of adjusting programs o

they may be placed in arbitrary core locations is called relocation. Relocation loaders

perform four functions.

1.6 TRANSLATOR

A translator is a program that takes as input a program written in one language and

produces as output a program in another language. Beside program translation, the translator

performs another very important role, the error-detection. Any violation of d HLL

specification would be detected and reported to the programmers. Important role of translator

are:

the hll.

1 Translating the hll program input into an equivalent ml program.

2 Providing diagnostic messages wherever the programmer violates specification of

1.7 TYPE OF TRANSLATORS:-

 INTERPRETOR

 COMPILER

 PREPROSSESSOR

NSRIT

K.Shankar,Assoc Professor
Dept of CSE - 4 -

1.8 LIST OF COMPILERS

1. Ada compilers

2 .ALGOL compilers

3 .BASIC compilers

4 .C# compilers

5 .C compilers

6 .C++ compilers

7 .COBOL compilers

8 .D compilers

9 .Common Lisp compilers

10. ECMAScript interpreters

11. Eiffel compilers

12. Felix compilers

13. Fortran compilers

14. Haskell compilers

15 .Java compilers

16. Pascal compilers

17. PL/I compilers

18. Python compilers

19. Scheme compilers

20. Smalltalk compilers

21. CIL compilers

1.9 STRUCTURE OF THE COMPILER DESIGN

Phases of a compiler: A compiler operates in phases. A phase is a logically interrelated

operation that takes source program in one representation and produces output in another

representation. The phases of a compiler are shown in below

There are two phases of compilation.

a. Analysis (Machine Independent/Language Dependent)

b. Synthesis(Machine Dependent/Language independent)

Compilation process is partitioned into no-of-sub processes called ‘phases’.

NSRIT

K.Shankar,Assoc Professor
Dept of CSE - 5 -

Lexical Analysis:-
LA or Scanners reads the source program one character at a time, carving the

source program into a sequence of automic units called tokens.

Syntax Analysis:-
The second stage of translation is called Syntax analysis or parsing. In this

phase expressions, statements, declarations etc… are identified by using the results of lexical

analysis. Syntax analysis is aided by using techniques based on formal grammar of the

programming language.

Intermediate Code Generations:-

An intermediate representation of the final machine language code is produced.
This phase bridges the analysis and synthesis phases of translation.

Code Optimization :-
This is optional phase described to improve the intermediate code so that the

output runs faster and takes less space.

Code Generation:-
The last phase of translation is code generation. A number of optimizations to

reduce the length of machine language program are carried out during this phase. The

output of the code generator is the machine language program of the specified computer.

Table Management (or) Book-keeping:-

NSRIT

K.Shankar,Assoc Professor
Dept of CSE - 6 -

This is the portion to keep the names used by the program and records

essential information about each. The data structure used to record this information called a

‘Symbol Table’.

Error Handlers:-
It is invoked when a flaw error in the source program is detected.

The output of LA is a stream of tokens, which is passed to the next phase, the

syntax analyzer or parser. The SA groups the tokens together into syntactic structure called

as expression. Expression may further be combined to form statements. The syntactic

structure can be regarded as a tree whose leaves are the token called as parse trees.

The parser has two functions. It checks if the tokens from lexical analyzer,

occur in pattern that are permitted by the specification for the source language. It also

imposes on tokens a tree-like structure that is used by the sub-sequent phases of the compiler.

Example, if a program contains the expression A+/B after lexical analysis this

expression might appear to the syntax analyzer as the token sequence id+/id. On seeing the /,

the syntax analyzer should detect an error situation, because the presence of these two

adjacent binary operators violates the formulations rule of an expression.

Syntax analysis is to make explicit the hierarchical structure of the incoming

token stream by identifying which parts of the token stream should be grouped.

Example, (A/B*C has two possible interpretations.)

1, divide A by B and then multiply by C or

2, multiply B by C and then use the result to divide A.

each of these two interpretations can be represented in terms of a parse tree.

Intermediate Code Generation:-
The intermediate code generation uses the structure produced by the syntax

analyzer to create a stream of simple instructions. Many styles of intermediate code are

possible. One common style uses instruction with one operator and a small number of

operands.

The output of the syntax analyzer is some representation of a parse tree. the

intermediate code generation phase transforms this parse tree into an intermediate language

representation of the source program.

Code Optimization

This is optional phase described to improve the intermediate code so that the
output runs faster and takes less space. Its output is another intermediate code program that

does the some job as the original, but in a way that saves time and / or spaces.

1, Local Optimization:-

There are local transformations that can be applied to a program to

make an improvement. For example,

If A > B goto L2

NSRIT

K.Shankar,Assoc Professor
Dept of CSE - 7 -

L2 :
Goto L3

This can be replaced by a single statement

If A < B goto L3

Another important local optimization is the elimination of common

sub-expressions

A := B + C + D

E := B + C + F

Might be evaluated as

T1 := B + C

A := T1 + D

E := T1 + F
Take this advantage of the common sub-expressions B + C.

2, Loop Optimization:-

Another important source of optimization concerns about increasing

the speed of loops. A typical loop improvement is to move a

computation that produces the same result each time around the loop

to a point, in the program just before the loop is entered.

Code generator :-
Cg produces the object code by deciding on the memory locations for data,

selecting code to access each datum and selecting the registers in which each computation is

to be done. Many computers have only a few high speed registers in which computations can

be performed quickly. A good code generator would attempt to utilize registers as efficiently

as possible.

Table Management OR Book-keeping :-
A compiler needs to collect information about all the data objects that appear

in the source program. The information about data objects is collected by the early phases of

the compiler-lexical and syntactic analyzers. The data structure used to record this

information is called as Symbol Table.

Error Handing :-

One of the most important functions of a compiler is the detection and
reporting of errors in the source program. The error message should allow the programmer to

determine exactly where the errors have occurred. Errors may occur in all or the phases of a

compiler.

Whenever a phase of the compiler discovers an error, it must report the error to
the error handler, which issues an appropriate diagnostic msg. Both of the table-management
and error-Handling routines interact with all phases of the compiler.

NSRIT

K.Shankar,Assoc Professor
Dept of CSE - 8 -

Example:

Position:= initial + rate *60

Lexical Analyzer

Tokens id1 = id2 + id3 * id4

Syntsx Analyzer

=

id1 +

id2 *

id3 id4

Semantic Analyzer

=

id1 +

id2 *

id3 60

int to real

Intermediate Code Generator

temp1:= int to real (60)

temp2:= id3 * temp1

temp3:= id2 + temp2

id1:= temp3.

Code Optimizer

Temp1:= id3 * 60.0

NSRIT

K.Shankar,Assoc Professor
Dept of CSE - 9 -

Id1:= id2 +temp1

Code Generator

MOVF id3, r2

MULF *60.0, r2

MOVF id2, r2

ADDF r2, r1

MOVF r1, id1

1.10 TOKEN

LA reads the source program one character at a time, carving the source program into
a sequence of automatic units called ‘Tokens’.

1, Type of the token.

2, Value of the token.

Type : variable, operator, keyword, constant

Value : N1ame of variable, current variable (or) pointer to symbol table.

If the symbols given in the standard format the LA accepts and produces

token as output. Each token is a sub-string of the program that is to be treated as a single

unit. Token are two types.

1, Specific strings such as IF (or) semicolon.

2, Classes of string such as identifiers, label, constants.

